当前位置:首页 > 黑客技术 > 正文内容

读懂一个 Demo就能入门机器学习?「科普」

访客3年前 (2022-01-01)黑客技术599

我们总有一种感觉,机器学习门槛高、难入门。这是因为这里有太多晦涩的概念「神经网络」、「评估指标」、「优化算法」等让初学者老是有种盲人摸象的感觉。甚至连理解一个 Tensorflow 官方 Demo 都感觉吃力,因此不少开发者就有过「机器学习从入门到放弃」的经历。本文站在全局视角,通过分析一个 TensorFlow 官方的 Demo 来达到俯瞰一个「机器学习」系统的效果,从而让读者看清这个头大象的全貌,帮助初学者入门「机器学习」。

理解机器学习

「机器学习」的目的就是利用已有答案来寻找规则,从而做出预测。

「传统系统」的目标是获得答案

「机器学习」的目标是利用已有答案获得规则

正是因为「机器学习」的目标是获得规则,人们便可以拿它来做各种预测:股票走势、彩票号码、服饰推荐、甚至预测员工何时离职。图片识别本质上也是找到规则。比如要识别一张图片物体是否有一只猫咪,那么胡须、耳朵、绒毛等都可以作为猫咪的特征值,而定义特征值就是在定义成为一只猫的组成规则。

详解一个机器学习 Demo

学习一项技能最好方法就是去使用它。这部分我们来看一个 TensorFlow Demo。TensorFlow 是 Google 推出的深度学习框架,基本信息我就不多做介绍了。我要介绍的是如何读懂这个 Demo。你可能会问,一个 Demo 有那么难懂么?对于「机器学习」的初学者来说,如若不懂「神经网络」、「损失函数」、「评估指标」等概念,还真是挺难读懂一个 Demo 的。

看下这个 Demo,代码不多,我全部贴出来了。看到这部分代码的全貌,什么感觉?我第一次读到的感觉是:「语法都能看懂,但就是不知道你这是要干啥!」如果你也有这样的感觉,那么我建议你认真把这篇文章读完。这个 Demo 实际上是要训练一个可以识别手写数字的模型(Model), 要识别的手写数字长这样:你也许一下子会有很多问号。手写数字?图片在哪?怎么识别?别急,下面我来为大家详解这个 Demo。

数据准备

人工智能领域中的数据是什么?我们从 TensorFlow 这个框架的名字中就能看出来 -- Tensor(张量)形成的 Flow(流)。在「人工智能」领域,绝大部分数据都是以 Tensor 的形式存在,而 Tensor 可以直接理解成多维数组。

举个例子: 要把一张图片输入到人工智能模型中。我们第一反应是要先把图片数字化,用 Base64 来表示这张图、或者用二进制等等。但是对于人工智能系统,最佳方式是把图片转换成 Tensor。我们试试用 Tensor 来表示一张像素 3*3 、背景为白色、对角线为黑色的图片:

运行代码之后,我们就得到了那张对角线是黑色的 3*3 图片。这就是用一个四阶 Tensor 表示一张图片,Tensor 形状为(1, 3, 3)。同理如果要表示 6000 张 28*28 的图片,那么 Tensor 的形状就是(6000, 28, 28)。

现在我们阅读第一部分的代码:「MNIST」(Mixed National Institute of Standards and Technology database) 是美国国家标准与技术研究院收集整理的大型手写数字数据库,包含 60,000 个示例的训练集以及 10,000 个示例的测试集,里面的图片长这样。这些图片都是通过空间的矩阵的方式存储的:

这样我们就明白这段代码的意思了,是从 mnist 中获取用于训练的的数据集集( x_trian,y_train ),以及用于测试的数据集( x_test,y_test )。

x_trian 形状为 (6000, 28, 28) ,表示 6000 张 28*28的图片。

y_trian 形状为 (6000,),表示 x_train 对应的数字答案。

模型(model)是什么

得到了数据集之后,是不是可以开始训模型了?别急,我们要搞清楚模型是什么,Tensorflow 文档是这样定义模型:

在机器学习中,模型( Model )是一个具有可学习参数的函数,它将输入映射到输出。最优参数是通过在数据上训练模型获得的。一个训练有素的模型将提供从输入到所需输出的精确映射。

我来帮你们翻译一下这个定义:模型是个函数,这里面内置了很多参数,这些参数的值会直接影响模型的输出结果。有意思的是这些参数都是可学习的,它们可以根据训练数据的来进行调整来达到一组最优值,使得模型的输出效果最理想。

那么模型里参数又是什么?

Demo 当中模型传入的 4 个Layer 又是什么含义?

模型又是如何训练的?

想要知道这些问题答案,那么:「先生小姐,泳泳健身,呃不。神经网络,了解一下」

神经网络 ( Neural Network )

神经网络 ( Neural Network )顾名思义,就是用神经元 ( Neuron )连接而成的网络( Network )。那么什么是神经元?

机器学习中的神经元( Neuron ) 源于生物神经网络 -- 通过电位变化表示“兴奋”的生物神经元。在机器学习领域,一个神经元其实是一个计算单元。它需要被输入N 个信号后开始计算(兴奋),这些信号通过带权重(weights)的连接传递给了神经元,神经元通过加权求和,计算出一个值。然后这个值会通过激活函数( activation function )的处理,产生输出,通常是被压缩在 0~1 之间的数字。

Demo 当中,第一个 Layer 就是把就是把 28*28 的图片展开成一个包含 784 个神经元一维数组。

...

# 第一个 Layer

# 神经元展开成一维数组

tf.keras.layers

.Flatten(input_shape=(28,28)),

...

第二个 Layer:

...

tf.keras.layers

.Dense(128, activation='relu'),

...

Layer2 传入了参数activation='relu',意思是用 relu 作为激活函数 。我们先来理解下什么是「激活函数」,

当我们的大脑同时接收到大量信息时,它会努力理解并将信息分为 「有用 」和 「不那么有用 」的信息。在神经网络的情况下,我们需要一个类似的机制来将输入的信息分为 「有用 」或 「不太有用」。这对机器学习很重要,因为不是所有的信息都是同样有用的,有些信息只是噪音。这就是激活函数的作用,激活函数帮助网络使用重要的信息,抑制不相关的数据点。

例如 Demo 中,Layer1 输出 784 个神经元,并不是全部激活的。而只有激活神经元才能对 Layer2 产生刺激,而 layer4 输出10个神经元,其中第 2 个神经元激活,表示识别结果为 1 的概率是 99%。

所以 relu 是激活函数的一种,用于神经元的激活 -- 根据上一个 Layer 给予的刺激算出神经元最后输出(显示)的那个数字。Layer2 曾有 128个神经元,这128个神经元会和 Layer1 中 728 个神经元相互连接,共将产生728 * 128 =93184权重(weights)各自不同的连接 。Layer1 中神经元的输出将与连接到 layer2 的权重值进行加权求和,得到的结果会被带入relu函数,最终输出一个新的值作为 Layer2 中神经元的输出。

第三个 Layer

...

tf.keras.layers.Dropout(0.2),

Dropout layer 的主要作用就是防止过度拟合。过渡拟合现象主要表现是:最终模型在训练集上效果好;在测试集上效果差。模型泛化能力弱。Dropout 解决过度拟合的办法之一,就是随机丢弃一部神经元。Demo 当中就是使用 Dropout 随机丢弃 20% 神经元。

第四个 Layer

...

tf.keras.layers

.Dense(10, activation='softmax')

...

Layer4 上有 10 个神经元,并使用softmax作为激活函数,这 10个神经元的输出就是最终结的结果。下图为识别一个手写数字 1 的整个过程,各层神经元逐层激活,最终输出预测结果。

到这里,我们通过了解 4 个Layer之间的作用关系简单的了解了一个神经网络的运作方式。

模型训练补充

要读懂这段代码,我们要先通过一个类比来理解下什么是:损失函数( Loss Function )、优化算法( Optimization Algorithms )、评价指标( Evaluation Metrics )假如一名男士要开始锻炼身体,目标是胸围达到 120cm,且身材看起来匀称(别太壮):

经过反复训练,他的胸围达到了 110cm,那么我们可以把Loss = |目标(120cm)- 当前(110cm)|作为一个最简单的损失函数(Loss Function)。而 Demo 中的 Loss Function 用的是 - 稀疏类别交叉熵(sparse_categorical_crossentropy),这个算法的特点就是擅长分类。

是否达成目标,不能仅仅使用损失函数来判断。身材匀称、美观也很重要,而评价指标(Evaluation Metrics )的作用就给我们提供了一个评判标准。

接下来我们就要寻找产生 Loss 的规律,Loss 不仅仅是胸围小于 120cm 的损失,胸围大于 120cm 而导致美感损失也是 Loss 的一部分。因此想达到最佳效果,既不能运动量不足也不能用力过猛,要找到一个平衡力量和美感的中间值。我们给予训练要素不同的权重( Weights ),蛋白质补充权重为w0、胸肌上沿训练强度w1、胸肌中部训练强度w2、胸肌下沿训练强度w3、有氧运动训练强度w4 等等。最后得到一个权重的一维数组 [w1, w2...wn] 。像这样,通过不断调整 [w1, w2...wn] 得出最优输出的方法,就是优化算法( Optimization Algorithms )。

了神经网络的模型、层、权重、优化算法、损失函数以及评估指标等之后,我们就可以读懂 Demo 中那段代码了。现在尝试画一张神经网络的工作流程图,串一串一个神经网络的工作流程。

训练与测试

这部分很好理解,带入数据训练、测试就好。说一下epochs。在神经网络领域,一个 epoch 是指整个训练数据集的训练一个周期。1 epoch = 1正向传播( forward pass )+ 1 反向传播( backward pass )(我们可以简单的理解,正向传播目的是为了获得预测结果,反向传播目的是调整到最优的权重(weights),来让 Loss 最小化。)

Demo 中 epochs = 5 是因为 1次 epoch 很可能得不到最优的权重(weights)。既然 1 次不能满足,那就 5 次,5 次还不满足就 10 次,直到效果最小化 Loss 的效果不再变化。

总结

如果认真阅读了本文,那么我相信你已经对人工智能已经有了一点整体的认识,本文给了你一个鸟瞰人工智能的视角,摆脱了盲人摸象的感觉。这虽然不是魔法,能立刻把你变成人工智能大神,但对基本架构的进一步理解会增强你对人工智能的自学能力。无论你是从事前端、后端、全栈等技术开发者,或者只是对人工智能感兴趣,我都希望本文可以带给你一个新的视角去理解人工智能,让你读有所思,思有所得,得有所想,想有所获,获有所益。

扫描二维码推送至手机访问。

版权声明:本文由黑客接单发布,如需转载请注明出处。

本文链接:https://therlest.com/30002.html

标签: 就能
分享给朋友:

“读懂一个 Demo就能入门机器学习?「科普」” 的相关文章

天猫双十一活动什么时候开始华流

以前提到双十一那都是光棍才过的节日,而现在双十一摇身一变成了全民购物狂欢节。在双十一期间以淘宝天猫为主的购物平台都会推出各种优惠活动以及满减折扣,可以算得上是全年最便宜的时候了。那么天猫双十一活动什么时候开始呢?下面就跟百思特小编来详细了解一下2020年天猫双十一开始时间吧!...

今天的汽油单价 - 今日燃油价格最新行情

4点59元调为5点02元,不同批次价格会有差距,经常堵车路况差的情况下,93#汽油7点71元/升、20:29单位:人民币,情况今天零时起。 92号汽油,0 号柴油每升上调0点04元。更别说不同地区了,92号汽油,上调0点37行情元;93号,最高限价,决定从。 92汽油官方价6点柴油价:6点:5点90...

美团暗语「美团暗语2021」

 昨天,很多网友问小编美团暗语最好的方法是什么?有关美团暗语2021最好的方法是哪种?最新美团暗语2020?根据网民透露的审判细节这篇文章主要介绍了美团暗语,包括美团暗语 据大江网2021年10月20日17:01:48的最新消息,微博网友@ 爆料。 平安夜来临之际,事件,在网上炒得沸沸扬扬,引发全...

接单的黑客_可以找黑客黑美团吗

有在网络安全范畴中,猜测网络违法和歹意软件发展趋势好像现已成为了各大网络安全公司的传统了。 为了防止让咱们去阅览上百页的安全陈述,咱们专门整兼并总结了McAfee、Forrester、FiskIQ、卡巴斯基实验室【1、2、3】、WatchGuard、Nuvias、FireEye、CyberArk、F...

如何寻找黑客微信号(只有一个微信号,黑客可以查到对方吗)

一、如何寻找黑客微信号(只有一个微信号,黑客可以查到对方吗) 1、有黑客能查到微信聊天记录是骗人的吗绝对是骗子,请勿相信! 微信聊天信息保存在本地 一般聊天信息都是保存在本地的,除非开通会员可以将聊天信息存储。 黑客查找出来的微信聊天截图是真的吗在手机端启动微信,在微信主界面底部导航中点击“微信”...

Qq邮箱被黑客攻击怎么办,网络游戏提款难找黑客,电脑被黑客入侵修改开机密码

self.python_version = int(str(entry.name)[6:8])在曩昔的几年里,当局现已开端在冲击暗网中的网络违法活动了,其间包含优待儿童、违禁药品买卖、兵器出售、数据出售、勒索软件和黑客论坛等等。 近年来,大型网络违法商场逐步式微,尤其是在欧洲和美国当局在上一年打掉了...

评论列表

青迟语酌
3年前 (2022-05-31)

重值进行加权求和,得到的结果会被带入relu函数,最终输出一个新的值作为 Layer2 中神经元的输出。第三个 Layer...tf.keras.layers.Dropout(0.2),Dropout layer 的主要作用就是防止过

冬马涴歌
3年前 (2022-05-31)

的。看下这个 Demo,代码不多,我全部贴出来了。看到这部分代码的全貌,什么感觉?我第一次读到的感觉是:「语法都能看懂,但就是不知道你这是要干啥!」如果你也有这样的感觉,那么我建议你认真把这篇文章读完。这

鸢旧澉约
3年前 (2022-05-31)

连接到 layer2 的权重值进行加权求和,得到的结果会被带入relu函数,最终输出一个新的值作为 Layer2 中神经元的输出。第三个 Layer...tf.keras.layers.Dropout(0.2

鸽吻十鸦
3年前 (2022-05-31)

forward pass )+ 1 反向传播( backward pass )(我们可以简单的理解,正向传播目的是为了获得预测结果,反向传播目的是调整到最优的权重(weights),来让 Loss 最小化。)Demo 中 epochs = 5 是因为 1

弦久觅遇
3年前 (2022-05-31)

0,000 个示例的测试集,里面的图片长这样。这些图片都是通过空间的矩阵的方式存储的:这样我们就明白这段代码的意思了,是从 mnist 中获取用于训练的的数据集集( x_trian,y_train ),以及用于测试的数据集( x_test,y_test )。x_trian 形状为 (6000, 2

发表评论

访客

◎欢迎参与讨论,请在这里发表您的看法和观点。